On the equality of Hausdorff measure and Hausdorff content
نویسندگان
چکیده
منابع مشابه
Hausdorff measure
Here, instead of taking a σ-algebra as given and then defining a measure on this σ-algebra (namely, on the measurable sets), we take an outer measure as given and then define measurable sets using this outer measure. Carathéodory’s theorem states that the collection M of ν-measurable sets is a σ-algebra and that the restriction of ν to M is a complete measure. Suppose that (X, ρ) is a metric sp...
متن کاملMeasure Theory on Hausdorff Measures
Let y = h(x) be defined for 0 < x < oo and assume values in 0 ^ y ^ + co. Let S be any linear set of points and p an arbitrary positive number. Cover S by a countable number of open intervals h , I2, • • • of lengths xx, x2 , • • • each of which is less than p, and denote by mp(S; h) the lower bound of h(xi) + h(x2) + • • • for all such coverings of S. Then m(S; h) = limp|0mp(/S; h) is called t...
متن کاملOn the equality of Hausdorff and box counting dimensions.
By viewing the covers of a fractal as a statistical mechanical system, the exact capacity of a multifractal is computed. The procedure can be extended to any multifractal described by a scaling function to show why the capacity and Hausdorff dimension are expected to be equal.
متن کاملHausdorff Measure and Lukasiewicz Languages
The paper investigates fixed points and attractors of infinite iterated function systems in Cantor space. By means of the theory of formal languages simple examples of the non-coincidence of fixed point and attractor (closure of the fixed point) are given.
متن کاملOn Intersections of Cantor Sets: Hausdorff Measure
We establish formulas for bounds on the Haudorff measure of the intersection of certain Cantor sets with their translates. As a consequence we obtain a formula for the Hausdorff dimensions of these intersections.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Fractal Geometry
سال: 2015
ISSN: 2308-1309
DOI: 10.4171/jfg/27